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1 Definition

The topic in this lecture is Subgaussian random variables. We start with
the definition, and discuss some properties they hold.

Definition 1 (Subgaussian random variables). A random variable X is
subgaussian if ∃c, C such that

P(|x| > t) ≤ Ce−ct2 ∀t ≥ 0. (1)

As the name suggests, the notion of subgaussian random variables is a
generalization of Gaussian random variables. Both the following well known
random variables are subgaussian random variables (r.v’s):

Example 2. The following are examples of subgaussian random variables.

1. Gaussian r.v’s are subgaussian: g ∼ N(0, 1) : P(|g| > t) ≤ e−t2/2 ∀t.
2. Bounded r.v’s, Bernoulli variables.

2 Properties

Let us recall Lecture 3. Using Lemma 6, definition (1) can be expressed
equivalently in two other ways;
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Lemma 3 ((Lecture 3,Lemma 6) Tails/Integrability/Moments).

(1) ⇔ E
(
ec2X2

)
≤ C2

⇔ (E|X|p)1/p ≤ C3
√

p.

The following Lemma shows that assuming further that the subgaussian
r.v is mean zero, there is another equivalent description;

Lemma 4 (Moment Generating Function). Let X be a mean zero r.v. Then,
the following are equivalent;
(1) X is subgaussian.
(2) EetX ≤ ect2 ∀t ≥ 0.

Note that this is not true when EX 6= 0 (e.g.X ≡ 1). Also note that (2)
implies that EetX ' 1 when t is small.

Proof. (i) Show (1) ⇒ (2). Using Taylor expansion,

EetX = 1 + tE(X) +
∞∑

k=2

tk
E(Xk)

k!
.

Since we are assuming the second term to be zero (E(X) = 0),using Lemma
3 we obtain

EetX ≤ 1 +
∞∑

k=2

tk
(C3

√
k)k

k!

≤ 1 +
∞∑

k=2

(
C ′t√

k

)k

.

1)When t ≤ 1/C ′, since the sum will be smaller than a geometric series,

EetX ≤ 1 + C ′′t2 ≤ ect2 .

2)When t ≥ 1/C ′, we want to show

Ee(tX−ct2) ≤ 1.

Here, since X is subgaussian, we know from Lemma 3 that

Eec2X2 ≤ C2.
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Here we claim we can set c so that Ee(tX−ct2) ≤ Eec2X2
(tX − ct2 ≤ c2X

2):

tx− ct2 = −c(t− x

2c
)2 +

X2

4c
≤ X2

4c
.

Therefore, by setting c = 1/4c2, we obtain tX − ct2 ≤ c2X
2.

∴ Ee(tX−ct2) ≤ Eec2X2 ≤ C2.

∴ EetX ≤ C2e
ct2 ≤ eC′′′t2 .

The last inequality follows from the fact that t is not too small (t > 1/C ′).

(ii)Show (2) ⇒ (1).

P(X > u) = P(etX > etu) ≤ E(etX)
etu

,

Where we used Markov’s inequality. Since we are supposing (2), we have

E(etX)
etu

≤ ect2−tu.

Here optimize in t by setting t = u/2c. Then we have

P(X > u) ≤ e−u2/2c = e−u2/2c.

Using Lemma 4, we can prove the following Theorem, which states that
independent and mean-zero subgaussian random variables has another re-
markable property (which is trivial in gaussian r.v’s (if

∑
a2

i = 1,
∑

aigi =
N(0, 1))).

Theorem 5. Let X1, X2, · · · , Xn be independent, mean-zero subgaussian
random variables. Also let a1, a2, · · · an ∈ R be such that

∑
k a2

k = 1. Then,∑
k akXk is a subgaussian random variable.

Proof.
Ee(t

P
k akXk) = E

∏

k

etakXk =
∏

k

EetakXk ,

where we used the independence of Xk in the last equality. By Lemma 4,
EetX ≤ ect2 , for all t ≥ 0, all k. Therefore,

Ee(t
P

k akXk) ≤
∏

k

ect2a2
k = e

P
k ct2a2

k = ect2 .
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We immediately have the following corollary;

Corollary 6. Let X1, X2, · · · , Xn be independent, mean-zero subgaussian
random variables. Then

P(|
∑

k

akXk| > t) ≤ Ce−ct2/||a||22 , ∀t ≥ 0.

In this corollary, if we think of a partial case when Xk = ±1 (Bernoulli
r.v’s), we obtain (set ak = 1/

√
n);

P
(

1√
n
|
∑

±1| > t

)
≤ e−t2/2

This is the Hoeffding inequality. This also verifies the Quantitative Central
Limit Theorem.
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