Non-Asymptotic Theory of Random Matrices

Lecture 5: Subgaussian random variables

Lecturer: Roman Vershynin Scribe: Yuji Nakatsukasa

Thursday, January 18, 2007

1 Definition

The topic in this lecture is Subgaussian random variables. We start with
the definition, and discuss some properties they hold.

Definition 1 (Subgaussian random variables). A random variable X is
subgaussian if dc, C' such that

P(|z| > t) < Ce™ Vit > 0. (1)

As the name suggests, the notion of subgaussian random variables is a
generalization of Gaussian random variables. Both the following well known
random variables are subgaussian random variables (r.v’s):

Example 2. The following are examples of subgaussian random variables.

1. Gaussian r.v’s are subgaussian: g ~ N(0,1) : P(|g| > t) < e—t?/2 .

2. Bounded r.v’s, Bernoulli variables.

2 Properties

Let us recall Lecture 3. Using Lemma 6, definition (1) can be expressed
equivalently in two other ways;



Lemma 3 ((Lecture 3,Lemma 6) Tails/Integrability/Moments).

(1) = E(e2¥) <0y
& (BIXP)YP < Cs/p.

The following Lemma shows that assuming further that the subgaussian
r.v is mean zero, there is another equivalent description;

Lemma 4 (Moment Generating Function). Let X be a mean zero r.v. Then,
the following are equivalent;

(1) X is subgaussian.

(2) EetX < et Wt > 0.

Note that this is not true when EX # 0 (e.g.X = 1). Also note that (2)
implies that EetX ~ 1 when t is small.

Proof. (i) Show (1) = (2). Using Taylor expansion,
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Since we are assuming the second term to be zero (E(X) = 0),using Lemma
3 we obtain
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1)When ¢ < 1/C", since the sum will be smaller than a geometric series,
EeX <1+C"% < e
2)When t > 1/C’, we want to show
Ee(tXfctQ) <1

Here, since X is subgaussian, we know from Lemma 3 that

Ee2X* < O,



Here we claim we can set ¢ so that Ee(X—¢*) < Eee2X*(1X — ct? < ¢y X?):
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Therefore, by setting ¢ = 1/4c, we obtain tX — ct? < co X2

X
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The last inequality follows from the fact that ¢ is not too small (¢t > 1/C").

(ii)Show (2) = (1).
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P(X > u) = P(e'X > ") <
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Where we used Markov’s inequality. Since we are supposing (2), we have
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Here optimize in t by setting ¢ = u/2¢. Then we have
P(X >u) < e v/ = gmu /2
O
Using Lemma 4, we can prove the following Theorem, which states that
independent and mean-zero subgaussian random variables has another re-

markable property (which is trivial in gaussian r.v’s (if Y a? = 1, 3 a;9; =
N(0,1))).

Theorem 5. Let X1, Xo,---, X, be independent, mean-zero subgaussian
random variables. Also let ay,as,---a, € R be such that ), a% = 1. Then,
> ak Xy is a subgaussian random variable.

Proof.
Ee(tzk apXk) — EHetaka — HEem’“X’“,
k k

where we used the independence of Xj in the last equality. By Lemma 4,
EetX < e for all t > 0, all k. Therefore,
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We immediately have the following corollary;

Corollary 6. Let X1, Xs, -+, X, be independent, mean-zero subgaussian
random variables. Then

P(| Y an Xy > t) < Cem/llalls vt >0,
k

In this corollary, if we think of a partial case when X = £1 (Bernoulli
r.v’s), we obtain (set ar = 1/y/n);
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This is the Hoeffding inequality. This also verifies the Quantitative Central
Limit Theorem.



